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Abstract
Molecular dynamics simulations have been used to calculate the self-diffusion
coefficient, D, and other transport coefficients of the hard sphere and Weeks–
Chandler–Andersen (WCA) fluids over a wide density range. Simulations were
carried out with different numbers of particles, N , in the range between 500 and
273 375 for the WCA and up to 10 976 for the hard sphere fluid. These data were
fitted to the relationship D = D∞ − AN−α , where the parameters D∞, A and
α were all allowed to be density dependent. The self-diffusion coefficient in the
thermodynamic limit was obtained for both fluids. The Stokes–Einstein (SE)
relationship stick–slip parameter, c = kBT/π Dηs, where kB is Boltzmann’s
constant, T is the temperature and ηs is the shear viscosity, was calculated for
the two fluids at each state point as a function of N . Because of the relatively
strong N dependence of D, the parameter c is also shown to be sensitive to
N . It is shown that data taken for a few hundred particles can significantly
overestimate the value of c. At liquid-like densities, with increasing system size,
c tends towards the slip value of 2. The same trend is observed for hard spheres
and WCA particles. Therefore for any study of the SE stick–slip parameter
it is important to perform several simulations for different system sizes and
extrapolate the self-diffusion coefficient to the thermodynamic limit, and it is
this value which should be used to compare with theory. At the same packing
fraction the self-diffusion coefficient of the WCA fluid is larger than the value
for the hard sphere fluid in the thermodynamic limit by, for example, 10% at a
packing fraction of 0.3 and 60% at a packing fraction of 0.49. The trend for the
shear viscosity is the reverse, both of which could be attributed to the softness
of the potential in the WCA case and its effect in inducing more cooperative
interparticle trajectories than for the hard sphere.

0953-8984/07/376106+08$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/37/376106
mailto:d.heyes@surrey.ac.uk
http://stacks.iop.org/JPhysCM/19/376106


J. Phys.: Condens. Matter 19 (2007) 376106 D M Heyes

1. Introduction

Molecular dynamics simulation has proved a useful tool for calculating the transport
coefficients of simple model fluids. One area of interest has been testing the extent to which
the Stokes–Einstein (SE) relationship applies to these simple fluids. The Stokes–Einstein
relationship is

Dηs = kBT

cπσ
, (1)

where kB is Boltzmann’s constant, T is the temperature, D is the self-diffusion coefficient and
ηs is the shear viscosity. c is a boundary condition parameter, which ranges between c = 2
(‘slip’) and c = 3 (‘stick’) for macroscopic spheres in a Newtonian solvent. The results
of numerous simulations have revealed that c typically ranges in between these extremes for
fluids at liquid-like densities, tending towards the slip limit with increasing density (e.g. see [1]
and [2], p 262). These conclusions have typically been based on molecular dynamics (MD)
simulations of less than a few thousand particles (often only on a few hundred), which is
unsatisfactory as, although the shear viscosity has a relatively weak system size dependence
(above about 500 particles), the self-diffusion coefficient is strongly system size dependent [3].
Therefore, in order to make meaningful comparisons with theory (which are implicitly in the
thermodynamic limit) the value of the self-diffusion coefficient in the limit of infinite system
size (or N → ∞, where N is the number of molecules in the simulation cell) is required.
Because of the inevitably finite computer resources the thermodynamic limit for D is not
accessible directly by means of MD, and the value of D in the N → ∞ limit must be obtained
by extrapolation of the finite N data [3].

Dunweg and Kremer [4] and more recently Fushiki [5] and Yeh and Hummer [6] derived
an expression for the N dependence of the self-diffusion coefficient of arbitrary liquids, taking
into account the effects of the periodic images using a hydrodynamics model which is, formally
at least, valid at any fluid density. The packing fraction ζ is a convenient measure of the density
and is defined as ζ = π Nσ 3/6V where N is the number of hard spheres in volume V . This
theory predicts

D(ζ, N) = D∞(ζ ) + A(ζ )N−α(ζ ), (2)

where D∞(ζ ) is the ζ -dependent self-diffusion coefficient in the thermodynamic limit. The
exponent in the theory is α = 1/3 and A = −ξkBT ζ 1/3/62/3π4/3ηs, where ξ � 2.837 297 [6].
Equation (2) has also been used to extrapolate to infinite N the self-diffusion coefficient of
liquid para-hydrogen computed using ring-polymer molecular dynamics [7]. We recently
carried out a test of this formula for the hard sphere fluid over a range of packing fractions [3],
and showed that for N up to 10 976, while the analytic form in equation (2) applied very well
for each ζ considered, the optimum exponent α was higher than 1/3 in the low and high density
extremes, and that A(ζ ) also deviated from the above formula in these cases. Nevertheless, the
equation (2), with α chosen as a free parameter, does represent the simulation data rather well
at all densities. The D∞, A and α data were fitted to low order polynomials in ζ whose analytic
forms and parameter values are reported in [3]

The purpose of this work is to explore further the implications of the formula in
equation (2), this time concentrating on the Stokes–Einstein (SE) relationship. Clearly as
c depends on D, the system size dependence of D will have an effect on c. In order to
test SE we chose two interaction potentials where the effective diameter of the particle is
relatively unambiguous, which then allows us to focus on c itself. We use two purely repulsive
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interactions. The first, the hard sphere potential, φ(r), is

φ(r) =
{

∞, r � σ

0 r > σ ,
(3)

where r is the interparticle separation and σ is the hard sphere diameter. Also considered here
is the steeply repulsive but nevertheless continuous interaction for a model fluid, namely the
Weeks–Chandler–Andersen (WCA) potential [8]:

φ(r) =
⎧⎨
⎩ 4ε

((σ

r

)12 −
(σ

r

)6
)

+ ε, r � 21/6σ

0 r > 21/6σ ,
(4)

which is the Lennard-Jones (LJ) potential, shifted upwards by ε and truncated at the LJ
potential minimum of 21/6σ . The WCA fluid was originally devised as a reference fluid for
a perturbation treatment of the LJ fluid [8] (see also [9, 10]), but it has subsequently found
use as a generic fluid for simulation which is economical to employ, due to the short range of
this potential. The WCA potential has been chosen largely for computational convenience in
handling the very large system sizes, but noting that the treatment in [4–6] is independent of
intermolecular potential, it is to be expected that the conclusions should be generally applicable
to other systems. Simulations were carried out mainly in the NV T ensemble using a molecular
dynamics code written by the author. Calculations were carried out at various densities for a
range of numbers of particles, N , in the range between 500 and 273 375 for the WCA fluid,
and 10 976 for the hard sphere fluid. The WCA simulations were carried out with kBT/ε = 1,
or T ∗ = 1 in more usual notation.

A temperature-rescaled effective diameter, σe, of the WCA potential is given by the
empirical formula σe = 21/6σ/(1 + √

T ∗)1/6, as discussed in [11]. This accounts very well for
the temperature dependence of the compressibility factor, Z (=PV/n RT , for the pressure P ,
number of moles, n, the gas constant, R, and temperature T ). For the present simulations, the
reduced temperature is T ∗ = 1 and therefore at this temperature according to this prescription,
σe = σ . It would be incorrect however to identify σe as an effective hard sphere diameter,
because, as was shown in [11], the hard sphere and WCA compressibility factors as a function
of density do not overlap (although they are close) when this temperature-scaled effective
diameter is used to define the packing fraction. The hard sphere and WCA systems follow
a somewhat different equation of state line (i.e. Z versus ζ using σe to define ζ in the WCA
case).

2. Results and discussion

The SE coefficient, c, is obtained from

c = kBT

πσ Dηs
. (5)

The hard sphere fluid is considered first. The shear viscosity of the hard sphere fluid can be
conveniently written in the form ηs = ηE f (ζ ), where ηE is the Enskog kinetic theory prediction
for the shear viscosity (e.g., see [12]) which is analytic. The correction factor f (ζ ) → 1
for ζ → 0, indicating that the Enskog prediction becomes increasingly more accurate with
decreasing density. The function f (ζ ) was expressed in [3] as f (ζ ) = 1.0 + a1ζ

a2 , where
a1 = 2588±258 and a2 = 11.11±0.13, which reproduces the molecular dynamics simulation
data of [3] within the statistical uncertainties of the calculations. The self-diffusion coefficients
obtained from MD simulation data from [3] were fitted to equation (2) in which D∞, A and α

were represented by low order polynomials in ζ (see [3]).
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Table 1. Self-diffusion coefficient and shear viscosity of the hard sphere fluid in the thermodynamic
limit, D∞,HS, from molecular dynamics data [3]. Data for different numbers of particles in the
simulation cell, N , were extrapolated to the thermodynamic limit at each of the packing fractions,
ζ , using the procedure applied to equation (6) in [3]. The units of D∞,HS are σ(kBT/m)1/2 where
σ is the hard sphere diameter of the hard sphere potential given in (3) and m is the mass of the hard
sphere. ηs,∞,HS is the shear viscosity of the hard sphere fluid in the thermodynamic limit, using
ηs = ηE f (ζ ) where ηE is the analytic Enskog prediction for the shear viscosity (e.g. see [12]).

ζ D∞,HS ηs,∞,HS ζ D∞,HS ηs,∞,HS ζ D∞,HS ηs,∞,HS

0.001 113 0.179 0.28 0.234 0.632 0.42 0.070 2 2.16
0.01 11.0 0.181 0.29 0.218 0.680 0.43 0.062 4 2.44
0.05 2.04 0.192 0.30 0.203 0.733 0.44 0.055 0 2.78
0.1 0.936 0.222 0.31 0.189 0.790 0.45 0.048 1 3.21
0.15 0.579 0.277 0.32 0.175 0.854 0.46 0.041 7 3.74
0.175 0.478 0.318 0.33 0.162 0.923 0.47 0.035 6 4.42
0.20 0.400 0.368 0.34 0.150 1.001 0.48 0.030 0 5.27
0.21 0.373 0.392 0.35 0.138 1.09 0.49 0.024 9 6.37
0.22 0.349 0.418 0.36 0.127 1.18 0.50 0.020 1 7.78
0.23 0.327 0.446 0.37 0.116 1.29 0.51 0.015 7 9.61
0.24 0.306 0.477 0.38 0.106 1.42 0.52 0.011 7 12.0
0.25 0.286 0.511 0.39 0.0965 1.56 0.53 0.008 15 15.1
0.26 0.267 0.548 0.40 0.0872 1.73 0.54 0.004 92 19.1
0.27 0.250 0.588 0.41 0.0785 1.92 0.55 0.002 06 24.3

The self-diffusion coefficients, D, for the WCA fluid were obtained by integration of the
velocity autocorrelation function (VACF) evaluated in the laboratory frame of reference (e.g.,
see [13], p 95, and [14]). The truncation time tc of the VACF was at least 100 reduced time
units (of σ(m/ε)1/2), and it was ensured that the VACF decayed statistically to zero well within
tc at each state point. For the simulations, the packing fractions ζ were 0.3, 0.4, 0.45 and 0.49,
which are all in the fluid phase (the last being on the fluid–solid coexistence boundary, [15]).
A standard MD procedure was used with the Verlet leapfrog algorithm for the high density
systems, employing link lists to speed up the computations (e.g., [16], chapter 3). At each
value of N several simulations were carried out to establish the statistical uncertainty of the
data.

The self-diffusion coefficients of the WCA fluid at finite N were extrapolated to the
thermodynamic limit using equation (2). The parameters D∞, A and α were fitted to the
simulation data at each packing fraction using an implementation of the non-linear least-squares
Marquardt–Levenberg algorithm in the gnuplot graphics program [17]. The shear viscosity and
thermal conductivity, λ, have a much weaker N dependence, and an N−1 extrapolation was
adopted which is the same as has been used for the equation of state, which is also known to be
weakly system size dependent compared with the self-diffusion coefficient (e.g. see [18]).

The hard sphere simulations were carried out in the NV E ensemble using a molecular
dynamics code written by the author (as the potential energy is zero for hard spheres, the
temperature was also constant to machine accuracy in this special case of an NV E system). For
liquid-like states, system sizes (N) in the range 32–10 976 were chosen, with typically about 30
simulations being carried out for each value of ζ . Both the hard sphere and Weeks–Chandler–
Andersen fluid simulations were carried out in three dimensions with a cubic simulation cell
and periodic boundary conditions in each of the three cartesian directions. The simulations
represented systems in the bulk and had no free boundaries. Table 1 presents the self-
diffusion coefficients and shear viscosity in the N → ∞ limit for the hard sphere fluid at
a series of packing fractions. The maximum equilibrium fluid density is 0.493 and the glass
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Figure 1. Packing fraction, ζ , dependence of the Stokes–Einstein boundary condition parameter
c = kBT/π D(N)ηs(N) for hard spheres for selected values of N , given in the figure. D(N) was
fitted to equation (2) or (6) from [3]. The low density kinetic theory prediction (‘KT’) is also shown
in the figure. Note that c = 2 and c = 3 correspond to the slip and stick boundary conditions
respectively. The errors for the data in the thermodynamic limit are given in the figure as ‘Error’.

Table 2. Quantities associated with the self-diffusion coefficient, and other transport coefficients, of
the hard sphere and WCA fluids. ζ is the packing fraction, defined in both cases as ζ = π Nσ 3/6V
(here σe = σ ). The various quantities are defined in the text. The estimated errors in the self-
diffusion coefficients are less that 2% in D, and 5% in the shear viscosity and thermal conductivity,
and 2% in the stick–slip parameter, c.

ζ D∞,HS D∞,WCA AWCA αWCA η∞,s,HS η∞,s,WCA λ∞,WSA c∞,HS c∞,WCA

0.3 0.203 0.226 −0.254 96 0.413 90 0.73 0.613 2.75 2.14 2.36
0.4 0.0872 0.109 −0.051 903 0.216 01 1.73 1.40 5.37 2.11 2.22
0.45 0.0481 0.0664 −0.034 501 0.221 89 3.21 2.43 7.44 2.06 2.09
0.49 0.0249 0.0393 −0.037 336 0.333 33 6.37 4.12 9.50 2.01 2.03

transition is between 0.57 and 0.58 [19] indicating that some of the states modelled were in the
metastable two-phase regime. Table 2 presents key parameters characterizing the hard sphere
and WCA fluids in the thermodynamic limit at four packing fractions. The shear viscosity
and thermal conductivity of the WCA fluid were obtained by the Green–Kubo time correlation
method [20, 21].

Figure 1 shows the density dependence of c as a function of ζ for the hard sphere fluid
for N between 500 and 10 976 and in the thermodynamic limit. The errors in these data arise
from both the ηs and D terms in equation (5). The shear viscosity has a typical statistical error
of ∼3–5% up to about ζ = 0.47, and increases steadily for higher packing fractions. This
quantity is assumed to be relatively independent of N here, and plays a role subsidiary to that
of the self-diffusion coefficient, which has a more significant N dependence. The statistical
error in D at a given packing fraction is maximum in the thermodynamic limit, which was
obtained by extrapolation of the finite N data for D. The errors in c due solely to those in D∞
are shown in figure 1 (the contribution from the shear viscosity is the same for each N value
at a given packing fraction). It is seen that the statistical uncertainties only becomes significant
and comparable to the N dependence itself for densities much higher than about ζ = 0.51. The
various curves for different N values in the figure are therefore statistically distinguishable.

In the zero-density limit, kinetic theory gives c = 256ζ/5π using definitions for the self-
diffusion coefficient and shear viscosity of hard spheres in the zero-density limit given in, for
example, [12]. The figure shows that the simulation data agree well with this formula for
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Figure 2. N dependence of the Stokes–Einstein boundary condition parameter c =
kBT/π D(N)ηs(N) as a function of packing fraction for hard spheres.

Figure 3. As for figure 2 except that the WCA fluid was considered and α = 1/3.

densities up to about 0.1. The SE parameter reaches a maximum for all N at about ζ � 0.2 and
then slowly decreases with increasing packing fraction up to about 0.5 before increasing rapidly
again in the metastable fluid region, indicating that the self-diffusion coefficient decreases more
rapidly than the viscosity increases with increasing density in this regime. There is a decrease in
c with increasing N which is most pronounced for 0.2 < ζ < 0.4. For example at ζ = 0.3 the
decrease in c is about 0.3 from N = 500 to ∞, which is significant in the context of comparing
simulation data with any theory, as simulation data are implicitly taken to be ‘exact’ and used
to test the adequacy of theory.

Figure 2 presents the dependence on N and ζ of c for the hard sphere fluid case in
a different way, with this time c plotted against N−1 to provide a clearer indication of
convergence to the thermodynamic limit (i.e., N−1 → 0). Curves for four densities, ζ =
0.3, 0.4, 0.45 and 0.49 are given in the figure. It can be seen that even for N > 2000 there
is a significant decrease in c as N increases further. The same trends are seen for the WCA
fluid, in figure 3, although the values of c are a little higher than for the hard sphere at the
corresponding density and value of N . Some more insights into the origin of this can be seen
in table 2, which shows various quantities in the thermodynamic limit. In the table, D∞,HS is
the value of the hard sphere self-diffusion coefficient in the N → ∞ limit. AWCA and αWCA

are the constants in equation (2) for the WCA fluid. ηs,WCA is the value of the shear viscosity
of the WCA fluid in the thermodynamic limit obtained using equation (2) with an α = 1
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extrapolation to N → ∞. λ∞,WCA is the value of the thermal conductivity of the WCA fluid in
the thermodynamic limit obtained using equation (2) with an α = 1 extrapolation to N → ∞.
η∞,s,HS is the shear viscosity of the hard sphere fluid in the thermodynamic limit. c∞,HS and
c∞,WCA are the values of the Stokes–Einstein parameter, c, in the thermodynamic limit for the
WCA fluid. The values of c were determined at each N and ζ , then extrapolated to N → ∞.
The functional form cWCA = c∞,WCA − AWCA N−αWCA was fitted to the simulation data. The
parameters c∞,WCA, AWCA and αWCA were fitted to the simulation data at each packing fraction
using an implementation of the non-linear least-squares Marquardt–Levenberg algorithm in the
gnuplot graphics program [17].

Table 2 shows that the self-diffusion coefficient of the WCA fluid is a little higher than that
of the hard sphere fluid at the same density, and the shear viscosity is correspondingly lower
than the hard sphere value. This is consistent with previous simulations in which the softness
effect has been shown to enhance the fluidity of the system, presumably because the longer
range of the potential enables the particle trajectories to be more cooperative. In the case of
the hard sphere the particles have totally uncoordinated trajectories unless they collide. The
two opposite trends tend to cancel each other out in their effects on the stick–slip parameter.
Nevertheless there is an effect. The self-diffusion coefficients in this limit are somewhat larger
for the WCA fluid than for the hard sphere fluid, yet the corresponding c values are also
larger, especially at low densities. This reveals that the effect of softness is a little stronger
in decreasing the shear viscosity than in increasing the self-diffusion coefficient. The thermal
conductivities of the WCA fluid are also given in table 2.

3. Conclusions

To conclude, the N dependence of the Stokes–Einstein stick–slip coefficient is significant for
the hard sphere and the WCA fluids, and presumably other simple liquids. The system size
dependence of the shear viscosity is relatively weak for systems in excess of about 500 particles,
whereas the self-diffusion coefficient has a more pronounced and relatively slowly converging
convergence to the thermodynamic limit. It is therefore important to use the self-diffusion
coefficient and shear viscosity values in the thermodynamic limit, D∞ and η∞,s, respectively,
to compare with theory. D∞ can be readily and accurately estimated by extrapolation of D
according to equation (2), in which α is employed as a free parameter in the fitting process
(although as has been proved in [3], for not too low densities, the value of D∞ is relatively
insensitive to the value of α in a reasonable range near 1/3).
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